A general and islet cell-enriched overexpression of IGF-I results in normal islet cell growth, hypoglycemia, and significant resistance to experimental diabetes.
نویسندگان
چکیده
Insulin-like growth factor I (IGF-I) is normally produced from hepatocytes and various other cells and tissues, including the pancreas, and is known to stimulate islet cell replication in vitro, prevent Fas-mediated beta-cell destruction and delay the onset of diabetes in nonobese diabetic mice. Recently, however, the notion that IGF-I stimulates islet cell growth has been challenged by the results of IGF-I and receptor gene targeting. To test the effects of a general, more profound increase in circulating IGF-I on islet cell growth and glucose homeostasis, we have characterized MT-IGF mice, which overexpress the IGF-I gene under the metallothionein I promoter. In early reports, a 1.5-fold-elevated serum IGF-I level caused accelerated somatic growth and pancreatic enlargement. We demonstrated that the transgene expression, although widespread, was highly concentrated in the beta-cells of the pancreatic islets. Yet, islet cell percent and pancreatic morphology were unaffected. IGF-I overexpression resulted in significant hypoglycemia, hypoinsulinemia, and improved glucose tolerance but normal insulin secretion and sensitivity. Pyruvate tolerance test indicated significantly suppressed hepatic gluconeogenesis, which might explain the severe hypoglycemia after fasting. Finally, due to a partial prevention of beta-cell death against onset of diabetes and/or the insulin-like effects of IGF-I overexpression, MT-IGF mice (which overexpress the IGF-I gene under the metallothionein I promoter) were significantly resistant to streptozotocin-induced diabetes, with diminished hyperglycemia and prevention of weight loss and death. Although IGF-I might not promote islet cell growth, its overexpression is clearly antidiabetic by improving islet cell survival and/or providing insulin-like effects.
منابع مشابه
Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملبررسی تغییرات آسیبشناسی پانکراس در هیپوگلیسمی ناشی از افزایش انسولین در دوران نوزادی
Hyperinsulinism is responsible for about 55% of hypoglycemia in children less than 1 year old. In this study pancreas from 8 children with idiopathic hyperinsulinemic hypoglycemia of infancy(HHI) who underwent pancreatectomy in Ali-Asghar Hospital from 10 years ago were examined, using histochemical method and morphometric measurements. The children ranged from 3 to 13 months, and were ...
متن کاملQuantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats
Background: Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats. Methods: Adult male Sprague-Dawley rats were made diabetic with intravenous s...
متن کاملPancreatic-specific inactivation of IGF-I gene causes enlarged pancreatic islets and significant resistance to diabetes.
The dogma that IGF-I stimulates pancreatic islet growth has been challenged by combinational targeting of IGF or IGF-IR (IGF receptor) genes as well as beta-cell-specific IGF-IR gene deficiency, which caused no defect in islet cell growth. To assess the physiological role of locally produced IGF-I, we have developed pancreatic-specific IGF-I gene deficiency (PID) by crossing Pdx1-Cre and IGF-I/...
متن کاملIslet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes
Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 294 5 شماره
صفحات -
تاریخ انتشار 2008